In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
This study is concerned with event-triggered fault tolerant control for a class of state-saturated systems subject to stochastic faults, unknown but bounded disturbances and deception attacks. After formulating stochastic faults, state saturations, and deception attacks, a hybrid system model is developed to facilitate analysis and design. An event-triggered transmission mechanism is proposed to decide whether the measurement values should be sent to the controller via wireless network. Since the sensor data is attacked by the adversary during the transmission, the actual measurement value received by the controller needs to be recalculated. Expressions of the dynamic output feedback controller are presented, and criteria are used to design a dynamic feedback controller to ensure that the system is uniformly ultimately bounded. To deal with the current problem, an algorithm is also developed and tested using the linear matrix inequality (LMI) toolbox. Finally, two numerical examples are given to illustrate the validity and effectiveness of the proposed strategies.
Wireless sensors have many new applications where remote estimation is essential. Considering that a remote estimator is located far away from the process and the wireless transmission distance of sensor nodes is limited, sensor nodes always forward data packets to the remote estimator through a series of relays over a multi-hop link. In this paper, we consider a network with sensor nodes and relay nodes where the relay nodes can forward the estimated values to the remote estimator. An event-triggered remote estimator of state and fault with the corresponding data-forwarding scheme is investigated for stochastic systems subject to both randomly occurring nonlinearity and randomly occurring packet dropouts governed by Bernoulli-distributed sequences to achieve a trade-off between estimation accuracy and energy consumption. Recursive Riccati-like matrix equations are established to calculate the estimator gain to minimize an upper bound of the estimator error covariance. Subsequently, a sufficient condition and data-forwarding scheme are presented under which the error covariance is mean-square bounded in the multi-hop links with random packet dropouts. Furthermore, implementation issues of the theoretical results are discussed where a new data-forwarding communication protocol is designed. Finally, the effectiveness of the proposed algorithms and communication protocol are extensively evaluated using an experimental platform that was established for performance evaluation with a sensor and two relay nodes.
In this paper, a general event-triggered framework is constructed to investigate the problem of remote fault detection for stochastic cyber-physical systems subject to the additive disturbances, sensor nonlinearities and deception attacks. Both fault-detection residual generation and evaluation module are fully described. Two energy norm indices are presented so that the fault-detection residual has the best sensitivity to faults and the best robustness to unwanted factors including additive disturbances and false information injected by attacker. Moreover, the filter gain and residual weighting matrix are formulated in terms of stochastic Lyapunov function, which can be conveniently solved via standard numerical software. Finally, an application example is presented to verify the performance of fault detection by comparative simulations. The prolonged battery life is experimentally evaluated and analyzed via a wireless node platform.
This paper proposes two novel, event-triggered fault-tolerant control strategies for a class of stochastic systems with state delays. The plant is disturbed by a Gaussian process, actuator faults, and unknown disturbances. First, a special case about fault signals that are coupled to the unknown disturbances is discussed, and then a fault-tolerant strategy is designed based on an event condition on system states. Subsequently, a send-on-delta transmission framework is established to deal with the problem of fault-tolerant control strategy against fault signals separated from the external disturbances. Two criteria are provided to design feedback controllers in order to guarantee that the systems are exponentially mean-square stable, and the corresponding H∞-norm disturbance attenuation levels are achieved. Two theorems were obtained by synthesizing the feedback control gains and the desired event conditions in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are provided to illustrate the effectiveness of the proposed theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.