“…Theorem 2: Giving constants κ ≥ 1, d ≥ 0, δ > 0, γ > 0, θ > 0, and β h > 0, the trajectories of system ( 16) starting from D1 will stay in D2 for time t > d, if there exist positive definite matrices Qpj , Sbj ∈ R 2n×2n , R1pj , Rcj , Ωp , S * pj ∈ R n×n , matrices Ũgj , G ∈ R n×n , Z ϑj ∈ R l×n , such that (19) and the following inequalities hold for p…”