People make sense of continuous streams of observed behavior in part by segmenting them into events. Event segmentation seems to be an ongoing component of everyday perception. Events are segmented simultaneously at multiple timescales, and are grouped hierarchically. Activity in brain regions including the posterior temporal and parietal cortex and lateral frontal cortex increases transiently at event boundaries. The parsing of ongoing activity into events is related to the updating of working memory, to the contents of long-term memory, and to the learning of new procedures. Event segmentation might arise as a side effect of an adaptive mechanism that integrates information over the recent past to improve predictions about the near future.
Making sense by segmentingImagine walking with a friend to a coffee shop. If asked to describe this activity in more detail you might list a few of the events that make it up. The events listed could be broken up by changes in the physical features of the activity, such as location: 'We started out by going down to the laboratory. We grabbed our coats and put them on. Then we walked out of the building to the corner by the subway station…' Or, they could be broken up by changes in conceptual features, such as your goals: 'We started our walk talking about how much construction is going on. When the topic turned to the new building with the coffee shop we decided to head over there to give it a try…' Such descriptions are typical of how people talk about events, and they illustrate something important about perception: people make sense of a complex dynamic world in part by segmenting it into a modest number of meaningful units. Recent research on event perception reveals that, as an ongoing part of normal perception, people segment activity into events and subevents. This segmentation is related to core functions of cognitive control and memory encoding, and is subserved by isolable neural mechanisms.
Events and their boundariesBy 'event' we mean a segment of time at a given location that is conceived by an observer to have a beginning and an end [1]. In particular we focus on the events that make up everyday life on the timescale of a few seconds to tens of minutes -things like opening an envelope, pouring coffee into a cup, changing the diaper of a baby or calling a friend on the phone. Event Segmentation Theory (EST) [2] (see Glossary) proposes that perceptual systems spontaneously segment activity into events as a side effect of trying to anticipate upcoming information (see Box 1). When perceptual or conceptual features of the activity change, prediction becomes more difficult and errors in prediction increase transiently. At such points, people update memory representations of 'what is happening now'. The processing cascade of detecting a