Chromosome band 3q26 is the locus of two genes, MDS1/EVI1 and EVI1. The proteins encoded by these genes are nuclear factors each containing two separate DNA-binding zinc finger domains. The proteins are identical, aside from the N-terminal extension of MDS1/EVI1, which is missing in EVI1. However, they have opposite functions as transcription factors. In contrast to MDS1/EVI1, EVI1 is often activated inappropriately by chromosomal rearrangements at 3q26 leading to inappropriate expression of the protein in hematopoietic cells and to myeloid leukemias, which are often characterized by abnormal megakaryopoiesis. We previously showed that the two proteins affect replication and differentiation of progenitor hematopoietic cell lines in opposite ways: whereas EVI1 inhibits the response of 32Dc13 cells to G-CSF and TGF1, MDS1/EVI1 has no effect on the G-CSF-induced differentiation of the 32Dc13 cells, and it enhances the growth-inhibitory effect of TGF1. In the present study, we analyzed the endogenous expression of the two genes during in vitro hematopoietic differentiation of murine embryonic stem (ES) cells and evaluated the effects of their forced expression on the ability of ES cells to produce differentiated hematopoietic colonies. We found that the expression of the two genes is independently and tightly controlled during differentiation. In addition, the forced expression of EVI1 led to a much higher rate of cell growth before and during differentiation, whereas the expression of MDS1/EVI1 repressed cell growth and strongly reduced the number of differentiated hematopoietic colonies. Finally, our study also found that the forced expression of EVI1 resulted in the differentiation of abnormally high numbers of megakaryocytic colonies, thus providing one of the first experimental models showing a clear correlation between inappropriate expression of EVI1 and abnormalities in megakaryopoiesis.