Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The well-known Rule07 is a simple thus efficient way to compare available technologies for IR imaging detectors in terms of dark current. The noise is then often estimated using a shot noise approximation on the dark current. Both II–VI and III–V communities use this rule of thumb as a reference for well-performing IR photodiodes. For HOT applications, a dark current close to this rule07 is considered a necessary condition but not a sufficient one to obtain a high-performance IR imager. Indeed, when limited by shot noise, rule07 describes well the noise behavior of the considered device. However, when considering low-frequency noise, it fails to describe the expected performances. In this paper, we focus on another figure-of-merit, dedicated to detector low-frequency noise rather than dark current. Systemic 1/f noise investigation in an IR detector was first reported by Tobin et al. in 1980. There is today a relative consensus on the fact that measured 1/f noise is proportional to the dark current. The ratio between the amplitude of the 1/f noise and the dark current of the same devices may therefore be used as a figure-of-merit for a given technology. This ratio (called the Tobin factor $${\alpha }_{\text{T}}$$ α T ) therefore appears adequate to compare different technologies as a figure-of-merit qualifying 1/f noise properties. This dimensionless ratio can also be very useful for optimizing a particular technology or process. However, in order to be relevant, this figure-of-merit must be estimated carefully as it appears, for instance, pixel pitch-dependent. Different examples of Tobin coefficient extraction are presented in this paper. We show that, depending on the technologies, the values of the Tobin coefficient can spread over several orders of magnitude. However, only low values result in high-quality IR imagers. Today, the best results we obtained show that $${\alpha }_{\text{T}}={10}^{-5}$$ α T = 10 - 5 is a state-of-art value to be compared with.
The well-known Rule07 is a simple thus efficient way to compare available technologies for IR imaging detectors in terms of dark current. The noise is then often estimated using a shot noise approximation on the dark current. Both II–VI and III–V communities use this rule of thumb as a reference for well-performing IR photodiodes. For HOT applications, a dark current close to this rule07 is considered a necessary condition but not a sufficient one to obtain a high-performance IR imager. Indeed, when limited by shot noise, rule07 describes well the noise behavior of the considered device. However, when considering low-frequency noise, it fails to describe the expected performances. In this paper, we focus on another figure-of-merit, dedicated to detector low-frequency noise rather than dark current. Systemic 1/f noise investigation in an IR detector was first reported by Tobin et al. in 1980. There is today a relative consensus on the fact that measured 1/f noise is proportional to the dark current. The ratio between the amplitude of the 1/f noise and the dark current of the same devices may therefore be used as a figure-of-merit for a given technology. This ratio (called the Tobin factor $${\alpha }_{\text{T}}$$ α T ) therefore appears adequate to compare different technologies as a figure-of-merit qualifying 1/f noise properties. This dimensionless ratio can also be very useful for optimizing a particular technology or process. However, in order to be relevant, this figure-of-merit must be estimated carefully as it appears, for instance, pixel pitch-dependent. Different examples of Tobin coefficient extraction are presented in this paper. We show that, depending on the technologies, the values of the Tobin coefficient can spread over several orders of magnitude. However, only low values result in high-quality IR imagers. Today, the best results we obtained show that $${\alpha }_{\text{T}}={10}^{-5}$$ α T = 10 - 5 is a state-of-art value to be compared with.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.