Pharmacologic investigations into the transmission processes underlying fictive swallowing in the rat have disclosed the potential diversity of chemical signals used in central deglutitive pathways. Monoaminergic mechanisms appear to serve as links between subcortical structures and the medullary pattern generator of swallowing (PGS), and may play a critical role in maintaining internal facilitatory drive, required by the PGS for optimal responsivity to peripheral sensory input. Cholinergic bulbar interneurons form an integral component of the PGS subnetwork controlling esophageal peristalsis. Local GABA neurons exert a tonic inhibition of the buccopharyngeal stage, may regulate buccopharyngeal-esophageal coupling, and may contribute to peristaltic rhythmic generation at both the premotoneuronal and motoneuronal level. Receptor subtypes for excitatory amino acids (glutamate, aspartate) are differentially associated with deglutitive premotoneurons for both the buccopharyngeal and esophageal stage, as well as with ambiguus motoneurons. Preliminary evidence suggests the existence of excitatory peptidergic mechanisms involving thyrotropin-releasing hormone, vasopressin, oxytocin, and somatostatin, a probable candidate for excitatory transmitter in the solitarioambigual internuncial projection to motoneurons innervating esophageal striated musculature. Further validation of this experimental model may ultimately help to establish a framework for the clinical recognition, management, and exploitation of drug actions on central deglutitive neuroeffectors.