Prosomes are ribonucleoprotein particles constituted by a variable set of about 20 proteins found associated with untranslated mRNA. In addition, they contain a small RNA, the presence of which has been an issue of controversy for a long time. The intact particles have a multicatalytic proteinase (MCP) activity and are very stable; we have never observed autodigestion of the particle by its intrinsic proteinase activity. Surprisingly it was found that Zn2+ and Cu2+ ions at concentrations of 0.1-1 mM disrupt the prosome particles isolated from HeLa cells and duck erythroblasts and abolish instantaneously its MCP activity, without altering the two-dimensional electrophoretic pattern of the constituent proteins. Fe2+, however, seems to induce autodegradation rather than dissociation of the prosome constituents. Most interestingly, protein or oligopeptide substrates protect the particle and its proteinase activity from disruption by Zn2+ or Cu2+. Nuclease-digestion assays reveal that the prosomal RNA, which is largely resistant in the intact particle, becomes digestible after dissociation of prosomes by Zn2+. These data give, for the first time, unambiguous proof of the presence of an RNA in the particle. Furthermore, they demonstrate a structure-function relationship between the complex and its enzyme activity, which seems to be based on the particle as an entity and not on the single constituent proteins.