A member of the AAA family of Mg + -ATPases from the archaeon Thermoplasma acidophilum has been cloned and expressed in Escherichia coli. The protein, VCP-like ATPase of Thermoplasma acidophilum (VAT), is a homologue of SAV from Sulfolobus acidocaldarius and CdcH of Halobacterium salinarium, and belongs to the CDC48/VCP/p97 subfamily. The deduced product of the vat gene is 745 residues long (M r 83 000), which has an optimal Mg 2+ -ATPase activity at 70°C. Electron microscopy shows the purified protein to form single and double homo-hexameric rings. Although the symmetry is different, the appearance of the complexes formed of two rings resembles the 20S proteasome and Hsp60/GroEL.
The RNA isolated from RNase-treated proteasome preparations from human erythrocytes, HeLa cells, the archaeon Thermoplasma acidophilum and also from recombinant proteasomes of T acidophilum expressed in Escherichia coli was characterized. The RNA associated with structurally similar protein particles, namely with the two molecular chaperones, groEL from E. coli and with the thermosome from ir: acidophilum, served as controls. Electrophoretic analysis on polyacrylamide gels of the radioactively end-labelled RNA revealed a very similar size distribution pattern, irrespectively of the protein particles from which they had been isolated. The predominant RNA species were in the size ranges 80 nucleotides and 120 nucleotides, respectively. Partial sequencing of their terminal regions by mobility-shift analysis revealed that, of the proteasomes from human erythrocytes, the approximately 80-nucleotide-long RNA consists of a heterogenous population of mostly tRNA species because they carried the tRNA-specific 3'-terminal sequence motif 5'-CCA-3'. The RNA in the size range 120 nucleotides isolated from the proteasomes of human erythrocytes and of T. acidophilum was also heterogeneous and displayed, in the terminal regions, a remarkable sequence similarity to the corresponding regions of the 5s rRNA from the same and different organisms. The total content of RNA of all the protein particles was quantified and found to be consistently sub-stoichiometric. All these findings strongly suggest that RNA associated with the proteasomes and with the molecular chaperones originate from the abundant cellular pool of the tRNAs and 5s rRNAs which bind non-specifically to these large protein particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.