Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is the most rapidly turned over mammalian enzyme. We have shown that its degradation is accelerated by ODC antizyme, an inhibitory protein induced by polyamines. This is a new type of enzyme regulation and may be a model for selective protein degradation. Here we report the identification of the protease responsible for ODC degradation. Using a cell-free degradation system, we demonstrate that immunodepletion of proteasomes from cell extracts causes almost complete loss of ATP- and antizyme-dependent degradation of ODC. In addition, purified 26S proteasome complex, but not the 20S proteasome, catalyses ODC degradation in the absence of ubiquitin. These results strongly suggest that the 26S proteasome, widely viewed as specific for ubiquitin-conjugated proteins, is the main enzyme responsible for ODC degradation. The 26S proteasome may therefore have a second role in ubiquitin-independent proteolysis.
To obtain information on the role of proteasomes in the immune system, we examined the effect of a major immunomodulatory cytokine, gamma interferon (IFN-gamma), on the expressions, structures, and functions of proteasomes. IFN-gamma greatly increased the levels of the mRNAs encoding LMP2 and LMP7, putative immuno-proteasome subunits encoded by genes within the class II MHC region, and these two subunits synthesized were assembled completely into the proteasomal multi-subunit complex in various types of human cells. The subunit organization of proteasome changed in response to IFN-gamma stimulation, due to assembly of newly synthesized subunits through up- and down-expressions of at least 6 proteasome genes including LMP2/LMP7 without change in the structure of pre-existing proteasomes. Interestingly, IFN-gamma dramatically stimulated the trypsin-like and chymotrypsin-like activities of the multifunctional proteasome and depressed the peptidylglutamyl-peptide-hydrolyzing activity, without affecting the activity for ATP-, ubiquitin-dependent proteolysis. These results indicate that IFN-gamma modifies not only the structural organization of the proteasome, but also its functions. Based on these findings, we discuss the role in the antigen processing/presentation pathway of proteasomes with functional diversity acquired through alteration of their subunit assembly in response to IFN-gamma stimulation.
Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.