The 26S proteasome is at the executive end of the ubiquitinproteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The "lid" of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAAATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates.coiled coils | mass spectrometry | proteasome-COP9-eIF3 domain | proteasome-cyclosome repeats I n eukaryotes, the ubiquitin-proteasome pathway (UPP) is essential for proteostasis: Misfolded proteins or otherwise defective proteins as well as short-lived regulatory proteins are eliminated by degradation (1). The UPP regulates many fundamental cellular processes, such as protein quality control, DNA repair, and signal transduction (for review see ref.2). The 26S proteasome is the most downstream element of the UPP, executing the degradation of polyubiquitylated substrates (3-5). It consists of the barrelshaped core particle (CP; approximately 700 kDa), which sequesters the proteolytically active site in its central cavity, and the regulatory particle (RP; approximately 900 kDa), which is attached at either one or both ends of the CP and prepares substrates for degradation (6).The RP consists of 19 different canonical subunits, including six regulatory particle AAA-ATPase subunits (Rpt1-6) and 13 regulatory particle non-ATPase subunits (Rpn1-3, Rpn5-13, and Rpn15). The integral ubiquitin (Ub) receptors Rpn10 and Rpn13 recognize polyubiquitylated substrates (7-9). Alternatively, polyubiquitylated substrates can be recruited by shuttling Ub-receptors (Dsk2, Rad23, Ddi2), which bind to substrates with their Ub-associated domain, and to Rpn1, Rpn10, or Rpn13 at their Ub-like domain (5). The metalloprotease Rpn11 deubiquitylates substrates prior to their degradation (10, 11). The functions of the other Rpn subunits remain to be established. The AAA-ATPases form a hexameric ring that unfolds substrates, opens the gate to the CP, and eventually translocates the substrates to the CP.Electron microscopy (EM) (12) and X-...
The mass spectrometric identification of chemically cross-linked peptides (CXMS) specifies spatial restraints of protein complexes; these values complement data obtained from common structure-determination techniques. Generic methods for determining false discovery rates of cross-linked peptide assignments are currently lacking, thus making data sets from CXMS studies inherently incomparable. Here we describe an automated target-decoy strategy and the software tool xProphet, which solve this problem for large multicomponent protein complexes.
The 26S proteasome operates at the executive end of the ubiquitinproteasome pathway. Here, we present a cryo-EM structure of the Saccharomyces cerevisiae 26S proteasome at a resolution of 7.4 Å or 6.7 Å (Fourier-Shell Correlation of 0.5 or 0.3, respectively). We used this map in conjunction with molecular dynamics-based flexible fitting to build a near-atomic resolution model of the holocomplex. The quality of the map allowed us to assign α-helices, the predominant secondary structure element of the regulatory particle subunits, throughout the entire map. We were able to determine the architecture of the Rpn8/Rpn11 heterodimer, which had hitherto remained elusive. The MPN domain of Rpn11 is positioned directly above the AAA-ATPase N-ring suggesting that Rpn11 deubiquitylates substrates immediately following commitment and prior to their unfolding by the AAA-ATPase module. The MPN domain of Rpn11 dimerizes with that of Rpn8 and the C-termini of both subunits form long helices, which are integral parts of a coiled-coil module. Together with the C-terminal helices of the six PCI-domain subunits they form a very large coiled-coil bundle, which appears to serve as a flexible anchoring device for all the lid subunits.protein degradation | electron microscopy | deubiquitylating enzyme T he 26S proteasome is a 2.5 MDa molecular machine designed for the controlled degradation of proteins marked for destruction by the covalent attachment of polyubiquitin chains [for reviews see (1-3)]. It is composed of two copies, each of 33 canonical subunits, as well as some proteasome interacting proteins (PIPs). The 26S holocomplex comprises two types of subcomplexes: the cylindrical 20S core particle (CP) harbouring the proteolytic chamber and the two 19S regulatory particles (RPs), which attach to opposite ends of CP cylinder. The RPs have multiple roles in preparing substrates for degradation: They recognize and bind ubiquitylated proteins, they deubiquitylate them followed by their unfolding, and they control the opening of the gate which gives access to the interior of the CP.While the structure of the 20S core complex was determined by X-ray crystallography almost two decades ago (4, 5), the structure of the 26S complex remained recalcitrant to crystallization attempts, presumably due to its conformational and compositional heterogeneity. Recently, the subunit architecture of the holocomplex has been determined by cryo-electron microscopy (EM) single particle analysis (SPA and ref. 6, 7) independently by two groups using different approaches for the assignment of RP subunits. Lander, et al. (6) obtained a 9 Å resolution map (Fouriershell correlation, FSC ¼ 0.5) of the 26S Saccharomyces cerevisiae proteasome and they determined the subunit positions by means of fusion constructs and automated segmentation methods. Lasker, et al. (7) performed an exhaustive computational search of possible subunit configurations within the boundaries of an 8.5 Å map of the 26S proteasome from Schizosaccharomyces pombe scoring possible configurati...
Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.