Transcription factors (TFs) regulate gene expression through chromatin where nucleosomes restrict DNA access. To study how TFs bind nucleosome-occupied motifs, we focused on the reprogramming factors OCT4 and SOX2 in mouse embryonic stem cells. We determined TF engagement throughout a nucleosome at base-pair resolution in vitro, enabling structure determination by cryo–electron microscopy at two preferred positions. Depending on motif location, OCT4 and SOX2 differentially distort nucleosomal DNA. At one position, OCT4-SOX2 removes DNA from histone H2A and histone H3; however, at an inverted motif, the TFs only induce local DNA distortions. OCT4 uses one of its two DNA-binding domains to engage DNA in both structures, reading out a partial motif. These findings explain site-specific nucleosome engagement by the pluripotency factors OCT4 and SOX2, and they reveal how TFs distort nucleosomes to access chromatinized motifs.
Proteasomes execute the degradation of most cellular proteins. Although the 20S core particle (CP) has been studied in great detail, the structure of the 19S regulatory particle (RP), which prepares ubiquitylated substrates for degradation, has remained elusive. Here, we report the crystal structure of one of the RP subunits, Rpn6, and we describe its integration into the cryo-EM density map of the 26S holocomplex at 9.1 Å resolution. Rpn6 consists of an α-solenoid-like fold and a proteasome COP9/signalosome eIF3 (PCI) module in a right-handed suprahelical configuration. Highly conserved surface areas of Rpn6 interact with the conserved surfaces of the Pre8 (alpha2) and Rpt6 subunits from the alpha and ATPase rings, respectively. The structure suggests that Rpn6 has a pivotal role in stabilizing the otherwise weak interaction between the CP and the RP.
histones in situ, which were partially lost upon aclarubicin treatment (Extended Data Fig. 1c, d). Thus, histones appear to dynamically engage cGAS in the nucleus.Consistent with prior work [13], functional analysis of cGAS in vitro enzymatic activity revealed that mononucleosomes (hereafter nucleosomes) inhibited DNA-induced cGAMP synthesis (Extended Data Fig. 1e). Likewise, compact chromatin fibres (12-mer nucleosome arrays) suppressed cGAS activity (Extended Data Fig. 1e). H2A-H2B dimers also had an inhibitory effect, but neither H2A or H2B monomers nor H3 or H4 monomers, respectively (Extended Data Fig. 1f, g). Thus, H2A-H2B dimers on their own can suppress cGAS (Extended Data Fig. 1h), albeit with weaker overall potency compared to fullassembled nucleosomes with additional features of nucleosomes in chromatin being necessary to exert maximal inhibition. Overall structure of the cGAS-NCP complexTo determine how cGAS interacts with nucleosomes, we pursued structural studies. A 1.5:1 molar mixture of human cGAS (residues 155 to 522) with a 147 bp 601 DNA nucleosome core particle (NCP) resulted in heterogenous particle distributions (Extended Data Fig. 2ad). To select for and stabilize more homogenous cGAS-NCP complexes, we combined gradient centrifugation with chemical crosslinking (GraFix) [15]. Both WT cGAS and cGAS K394E, a mutant impaired in dsDNA-mediated cGAS dimerisation [16], were used for structure determination. For the cGAS K394E mutant, we obtained a 4.1 Å reconstruction revealing two NCPs organized in a NCP 1 -cGAS 1 -cGAS 2 -NCP 2 sandwich arrangement with an expected molecular weight around 560 kDa, consistent with the most prominent peak fraction in multi-angle light scattering (MALS) (Fig. 1a, b, Extended Data Fig. 3, Supplementary Video 1, 2, and Extended Data Table 1a). The two individual nucleosomes are held together by two cGAS protomers. While the first cGAS protomer and its corresponding NCP (designated cGAS 1 and NCP 1 ) are well-resolved, the second nucleosome/cGAS pair (NCP 2 and cGAS 2 ) is less ordered (Extended Data Fig. 3e). In the dimeric NCP 1 -cGAS 1 -cGAS 2 -NCP 2 arrangement, each cGAS protomer interacts with the histone octamer of one NCP through histones H2A and H2B and the nucleosomal DNA (e.g. cGAS 1 and NCP 1 ), while contacting the second nucleosome (e.g. cGAS 1 and NCP 2 ) primarily through interactions with the nucleosomal DNA (Fig. 1a, b). In the WT cGAS structure, we observed a similar overall structural arrangement, with the NCP 1 -cGAS 1 -cGAS 2 -NCP 2 complex at 5.1Å and the focused NCP 1 -cGAS 1 structure at 4.7Å resolution (Extended Data
The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.n eukaryotes, the ubiquitin (Ub) proteasome system (UPS) is responsible for the regulated degradation of proteins (1-5). The UPS plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer needed. Consequently, the UPS is critically involved in numerous cellular processes, including cell cycle progression, apoptosis, and DNA damage repair, and malfunctions of the system often result in disease.The 26S proteasome executes the degradation of substrates that are marked for destruction by the covalent attachment of polyubiquitin chains. It is a molecular machine of 2.5 MDa comprising two subcomplexes, the 20S core particle (CP) and one or two 19S regulatory particles (RPs), which associate with the ends of the cylinder-shaped CP (6-8). The recognition and recruitment of polyubiquitylated substrates, their deubiquitylation, ATP-dependent unfolding, and translocation into the core particle take place in the RP. The structurally and mechanistically well-characterized CP houses the proteolytic activities and sequesters them from the environment, thereby avoiding collateral damage (9).The RPs attach to the outer α-rings of the CP, which control access to the proteolytic chamber formed by the inner β-subunit rings (10). Recently, the molecular architecture of the 26S holocomplex was established using cryo-EM-based approaches (11,12), and a pseudoatomic model of the holocomplex was put forward (13). The RP is formed by two subcomplexes, known as the base and the lid, which assemble independent...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.