Motor impairment is the most common complication after stroke, and recovery of motor function has been shown to be dependent on the extent of lesion in the ipsilesional corticospinal tract (iCST) and activity within ipsilesional primary and secondary motor cortices. However, work from neuroimaging research has suggested a role of the contralesional hemisphere in promoting recovery after stroke potentially through the ipsilateral uncrossed CST fibers descending to ipsilateral spinal segments. These ipsilateral fibers, sometimes referred to as “latent” projections, are thought to contribute to motor recovery independent of the crossed CST. The aim of this paper is to evaluate using cumulative evidence from animal models and human patients on whether an uncrossed CST component is present in mammals and conserved through primates and humans, and whether iCST fibers have a functional role in hemiparetic/hemiplegic human conditions. This review highlights that an ipsilateral uncrossed CST exists in human during development, but the evidence on a functionally relevant iCST component in adult humans is still elusive. In addition, this review argues that whereas activity within the ipsilesional cortex is essential for enhancing motor recovery after stroke, the role of iCST projections specifically is still controversial. Finally, conclusions from current literature emphasize the importance of activity in the ipsilesional cortex and the integrity of crossed CST fibers as major determinants of motor recovery after brain injury.