The motor output of the pontomedullary reticular formation (PMRF) was investigated to determine the reticulospinal system's capacity for bilateral control of the upper limbs. Stimulus triggered electromyographic averages (StimulusTA) were constructed from muscles of both upper limbs while two awake monkeys (Macaca fascicularis) performed a reaching task using either arm. Extensor and flexor muscles were studied at the wrist, elbow, and shoulder; muscles acting on the scapula were also studied. Post-stimulus effects (PStEs) resulted from 435 (81%) of 535 sites tested. Of 1611 PStEs analyzed, 58% were post-stimulus suppression (PStS), and 42% were post-stimulus facilitation (PStF). Onset latency was earlier for PStF than PStS, duration was longer for PStS, and amplitude was larger for PStF. Ipsilateral and contralateral PStEs were equally prevalent; bilateral responses were typical. In the ipsilateral forelimb and shoulder, the prevalent pattern was flexor PStF and extensor PStS; the opposite pattern was prevalent contralaterally. Sites producing strong ipsilateral upper trapezius PStF were concentrated in a region caudal and ventral to abducens. The majority of muscles studied had no clear somatotopic organization. Overall, the results indicate the monkey PMRF has the capacity to support bilateral coordination of limb movements using reciprocal actions within a limb and between sides.
Pontomedullary reticular formation (PMRF) neurons (309) were recorded simultaneously with electromyographic activity from arm and shoulder muscles in four monkeys performing arm-reaching tasks. Spike-triggered averages (SpikeTAs) were compiled for 292 neurons (3836 neuron-muscle pairs). Fourteen PMRF neurons located in a region ventral to the abducens nucleus produced 42 significant SpikeTA effects in arm and shoulder muscles. Of these 14 PMRF neurons, nine produced SpikeTA effects bilaterally. Overall, PMRF neurons facilitated ipsilateral flexors and contralateral extensors, while suppressing ipsilateral extensors and contralateral flexors. Spike-and stimulus-triggered averaging effects obtained from the same recording site were similar. These findings indicate that single PMRF neurons can directly influence movements of both upper limbs.
1. To examine the effect of disruption of basal ganglia output on limb stability and movement, muscimol was injected into the internal globus pallidus (GPi) of monkeys trained to make arm movements to visible or remembered targets in a two-dimensional workspace. 2. Injections of as little as 0.25 micrograms muscimol at GPi sites at which pallidal neurons with arm movement activity had been recorded were followed by drift of the contralateral arm within < 10 min. Drift was usually in the flexor direction. Injections at a few sites in or near the external pallidal segment sometimes were followed by extensor drift. 3. Drift was active (accompanied by activation of agonist muscles), but could be overcome by the animal, resulting in an oscillating movement off and on the required position. 4. The pallidal-receiving (PR) area of the thalamus was identified by recording the response of thalamic neurons to stimulation in the globus pallidus. The activity of 15 neurons identified as PR cells (n = 6) or within the PR region was recorded both before and after injection of muscimol into GPi. After the injection, the tonic discharge increased during the hold period in 47% of the cells studied. When postural drift also occurred, there was a close temporal correlation between the postinjection time at which drift occurred and the time at which the tonic discharge rate increased in thalamic neurons that were clearly related to arm movement. 5. The peak velocity of arm movements to visible or remembered visual target locations was decreased after injection of muscimol into GPi, sometimes with an increase in movement time. 6. The firing rate of PR thalamic neurons after injection of muscimol was also increased during the perimovement period. Because of the increase in the tonic discharge rate, however, the phasic movement-related change in activity could stay the same or even decrease. Postinjection changes in this movement-related phasic activity, however, were not necessarily coincident with changes in peak movement velocity. 7. Changes in reaction time were variable after injection of muscimol. In some cases it was increased, and in others decreased. The time of onset of phasic movement-related changes in the activity of PR neurons studied was not altered by the injection. 8. Our data indicate that the tonic inhibitory output of GPi, in particular to the cortical motor areas, is especially important in the maintenance of postural stability. In the absence of normal pallidal output, desired limb position can be achieved on the basis of either current or prior visual cues, but targeted movements are slowed.
The motor output of the medial pontomedullary reticular formation (mPMRF) was investigated using stimulus-triggered averaging (StimulusTA) of EMG responses from proximal arm and shoulder muscles in awake, behaving monkeys (M. fascicularis). Muscles studied on the side ipsilateral (i) to stimulation were biceps (iBic), triceps (iTri), anterior deltoid (iADlt), posterior deltoid (iPDlt), and latissimus dorsi (iLat). The upper and middle trapezius were studied on the ipsilateral and contralateral (c) side (iUTr, cUTr, iMTr, cMTr). Of 133 sites tested, 97 (73%) produced a poststimulus effect (PStE) in one or more muscles; on average, 38% of the sampled muscles responded per effective site. For responses that were observed in the arm and shoulder, poststimulus facilitation (PStF) was prevalent for the flexors, iBic (8 responses, 100% PStF) and iADlt (13 responses, 77% PStF), and poststimulus suppression (PStS) was prevalent for the extensors, iTri (22 responses, 96% PStS) and iLat (16 responses, 81% PStS). For trapezius muscles, PStS of upper trapezius (iUTr, 49 responses, 73% PStS) and PStF of middle trapezius (iMTr, 22 responses, 64% PStF) were prevalent ipsilaterally, and PStS of middle trapezius (cMTr, 6 responses, 67% PStS) and PStF of upper trapezius (cUTr, 46 responses, 83% PStS) were prevalent contralaterally. Onset latencies were significantly earlier for PStF (7.0 +/- 2.2 ms) than for PStS (8.6 +/- 2.0 ms). At several sites, extremely strong PStF was evoked in iUTr, even though PStS was most common for this muscle. The anatomical antagonists iBic/iTri were affected reciprocally when both responded. The bilateral muscle pair iUTr/cUTr demonstrated various combinations of effects, but cUTr PStF with iUTr PStS was prevalent. Overall, the results are consistent with data from the cat and show that outputs from the mPMRF can facilitate or suppress activity in muscles involved in reaching; responses that would contribute to flexion of the ipsilateral arm were prevalent.
Three monkeys ( M. fascicularis) performed a center-out, two-dimensional reaching task that included an instructed delay interval based on a color-coded visuospatial cue. Neural activity in the medial pontomedullary reticular formation (mPMRF) was recorded along with hand movement. Of 176 neurons with movement-related activity, 109 (62%) had movement-related but not preparatory activity (M cells), and 67 (38%) had both movement-related and preparatory activity (MP cells). EOG analyses indicated that the preparatory activity was not consistent with control of eye movements. There were slight changes in electromyograms (EMG) late in the instructed delay period before the Go cue, but these were small compared with the movement-related EMG activity. Preparatory activity, like the EMG activity, was also confined to the end of the instructed delay period for 14 MP cells, but the remaining 53 MP cells (30%) had preparatory activity that was not reflected in the EMG. Peri-movement neural activity varied with movement direction for 70% of the cells, but this variation rarely fit circular statistics commonly used for studies of directional tuning; directional tuning was even less common in the preparatory activity. These data show that neurons in the mPMRF are strongly modulated during small reaching movements, but this modulation was rarely correlated with the trajectory of the hand. In accord with findings in the literature from other regions of the CNS, evidence of activity related to motor preparation in these cells indicates that this function is distributed in the nervous system and is not a feature limited to the cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.