1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.
The subthalamic nucleus (STN) is a key structure for somatic motor control via the basal ganglia. In the present study, we demonstrate that the STN of the macaque monkey has dual sets of body part representations. Each of the two separate portions of the STN is characterized with somatotopically arranged direct cortical inputs that are derived from the primary motor cortex (MI) and the supplementary motor area (SMA). The first set of body part representations is transformed from the MI to the lateral STN, whereas the second set is transformed from the SMA to the medial STN. Intracortical microstimulation mapping was carried out to guide paired injections of anterograde tracers into somatotopically corresponding regions of the MI and the SMA. We found that direct inputs from the MI were allocated mostly within the lateral half of the STN, whereas those from the SMA were distributed predominantly within its medial half. Of particular interest was that the arrangement of somatotopical representations from the SMA to the medial STN was reversed against the ordering of those from the MI to the lateral STN; the orofacial, forelimb, and hindlimb parts were represented from medial to lateral within the medial STN, whereas these body parts were represented, in the inverse order, mediolaterally within the lateral STN. Moreover, inputs from homotopical MI and SMA regions were found to converge only partially into the STN. The present findings could account for somatotopically specific involuntary movements manifested in hemiballism that is caused by destruction of the STN.
1. Single-unit activity in the cingulate cortex of the monkey was recorded during the performance of sensorially (visual, auditory, or tactile) triggered or self-paced forelimb key press movements. 2. Microelectrodes were inserted into the broad rostrocaudal expanse of the cingulate cortex, including the upper and lower banks of the cingulate sulcus and the hemispheric medial wall of the cingulate gyrus. 3. A total of 1,042 task-related neurons were examined, the majority of which were related to the execution of the key press movements. In greater than 60% of them, the movement-related activity preceded the activity in the distal flexor muscles. 4. The movement-related neurons were distributed, in two foci, in the posterior and anterior parts of the cingulate cortex, both including the upper and lower banks of the cingulate sulcus. The posterior focus was found to largely overlap the area projecting to the forelimb area of the primary motor cortex by the use of the horseradish peroxidase (HRP) method. 5. About 40% of the cingulate cortical neurons showed equimagnitude responses during the signal-triggered and self-paced movements. The neurons exhibiting a selective or differential response to the self-paced motor task were more frequently observed in the anterior than in the posterior cingulate cortex. 6. The long-lead type of changes in activity, ranging from 500 ms to 2 s, were observed mainly before the self-paced and, much less frequently, before the triggered movements. They were particularly abundant in the anterior cingulate cortex. 7. Only a few of the neurons showed activity time-locked to the onset of the sensory signals. 8. These observations indicate that the anterior and posterior parts of the cingulate cortex are distinct entities participating in the performance of limb movements, even if the movements are simple, such as those in this study.
It is an important issue to address the mode of information processing in the somatic motor circuit linking the frontal cortex and the basal ganglia. In the present study, we investigated the extent to which corticostriatal input zones from the primary motor cortex (MI), the supplementary motor area (SMA), and the premotor cortex (PM) of the macaque monkey might overlap in the putamen. Intracortical microstimulation was performed to map the MI, SMA, and dorsal (PMd) and ventral (PMv) divisions of the PM. Then, two different anterograde tracers were injected separately into somatotopically corresponding regions of two given areas of the MI, SMA, PMd, and PMv. With respect to the PMd and PMv, tracer injections were centered on their forelimb representations. Corticostriatal input zones from hindlimb, forelimb, and orofacial representations of the MI and SMA were, in this order, arranged from dorsal to ventral within the putamen. Dense input zones from the MI were located predominantly in the lateral aspect of the putamen, whereas those from the SMA were in the medial aspect of the putamen. On the other hand, corticostriatal inputs from forelimb representations of the PMd and PMv were distributed mainly in the dorsomedial sector of the putamen. Thus, the corticostriatal input zones from the MI and SMA were considerably segregated though partly overlapped in the mediolateral central aspect of the putamen, while the corticostriatal input zone from the PM largely overlapped that from the SMA, but not from the MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.