Obligate social parasites evolve traits to effectively locate and then exploit their hosts, whereas hosts have complex social behavioral repertoires, which include sensory recognition to reject potential conspecific intruders and heterospecific parasites. While social parasite and host behaviors have been studied extensively, less is known about how their sensory systems function to meet their specific selective pressures. Here, we compare investment in visual and olfactory brain regions in the paper wasp Polistes dominula, and its obligate social parasite P. sulcifer, to explore the link between sensory systems and brain plasticity. Our results show opposite and significant differences, consistent with their very different life-histories, in the sensory investments between these two closely-related species. Social parasites initially invest in the optic lobes to likely locate their hosts. After host colony usurpation, the parasite increases its brain volume, with specific investment in antennal lobes, which mirrors the behavioral switch from a usurping parasite to an integrated parasitic queen of the host colony. Contrastingly, hosts initially invest in the antennal lobes and sensory processing compared to social parasites, as predicted by their need to maintain social cohesion, allocate colony tasks, and recognize con- and heterospecific intruders. Host queens show a trend of higher investment in all sensory brain regions compared to workers, paralleling differences in task allocations. Our work provides novel insights into how intraspecific brain plasticity can facilitate the unique sensory adaptations needed to perform specific tasks by the host or to transition from searching to successful host exploitation by the social parasite.