Relatively little is known about the relation between subthreshold error corrections and post-error behavioral compensations. The present study utilized lateralized beta power, which has been shown to index response preparation, to examine subthreshold error corrections in a task known to produce response conflict, the Simon task.We found that even when an overt correction is not made, greater activation of the corrective response, indexed by beta suppression ipsilateral to the initial responding hand, predicted post-error speeding, and enhanced post-error accuracy at the singletrial level. This provides support for the notion that response conflict associated with errors can be adaptive, and suggests that subthreshold corrections should be taken into account to fully understand error-monitoring processes. Furthermore, we expand on previous findings that demonstrate that post-error slowing and post-error accuracy can be dissociated, as well as findings that suggest that frontal midline theta oscillations and the error-related negativity (ERN) are dissociable neurocognitive processes.