Recent advances in thin-film deposition techniques, such as molecular beam epitaxy and pulsed laser deposition, have allowed for the manufacture of heterostructures with nearly atomically abrupt interfaces. Although the bulk properties of the individual heterostructure components may be well-known, often the heterostructures exhibit novel and sometimes unexpected properties due to interface effects. At heterostructure interfaces, lattice structure, stoichiometry, interface electronic structure (bonding, interface states, etc.), and symmetry all conspire to produce behavior different from the bulk constituents. This review discusses why knowledge of the electronic structure and composition at the interfaces is pivotal to the understanding of the properties of heterostructures, particularly the (spin polarized) electronic transport in (magnetic) tunnel junctions.