Although the local resistivity of semiconducting silicon in its standard crystalline form can be changed by many orders of magnitude by doping with elements, superconductivity has so far never been achieved. Hybrid devices combining silicon's semiconducting properties and superconductivity have therefore remained largely underdeveloped. Here we report that superconductivity can be induced when boron is locally introduced into silicon at concentrations above its equilibrium solubility. For sufficiently high boron doping (typically 100 p.p.m.) silicon becomes metallic. We find that at a higher boron concentration of several per cent, achieved by gas immersion laser doping, silicon becomes superconducting. Electrical resistivity and magnetic susceptibility measurements show that boron-doped silicon (Si:B) made in this way is a superconductor below a transition temperature T(c) approximately 0.35 K, with a critical field of about 0.4 T. Ab initio calculations, corroborated by Raman measurements, strongly suggest that doping is substitutional. The calculated electron-phonon coupling strength is found to be consistent with a conventional phonon-mediated coupling mechanism. Our findings will facilitate the fabrication of new silicon-based superconducting nanostructures and mesoscopic devices with high-quality interfaces.
International audienceWe report on a detailed analysis of the superconducting properties of boron-doped silicon films grown along the 001 direction by gas immersion laser doping. The doping concentration c(B) has been varied up to similar to 10 at. % by increasing the number of laser shots to 500. No superconductivity could be observed down to 40 mK for doping level below similar to 2 at. %. The critical temperature T(c) then increased steeply to reach similar to 0.6 K for c(B) similar to 8 at. %. No hysteresis was found for the transitions in magnetic field, which is characteristic of a type II superconductor. The corresponding upper critical field mu(o)H(c2) (0) was on the order of 1000 G, much smaller than the value previously reported by Bustarret et al. [E. Bustarret et al., Nature (London) 444, 465 (2006)]
α , β, and γ relaxation mechanisms have been identified in semicrystalline (45% of crystallinity) parylene-C (–H2C–C6H3Cl–CH2–)n films. C–Cl bonds induce the β-relaxation and explain increase in the dielectric constant as the frequency decreases in usual temperatures of operation for devices incorporating parylene-C. At cryogenic temperature (<−20 °C), γ-relaxation is assigned to the local motions of phenyl groups. Both β and γ relaxation processes obey an Arrhenius law with activation energy Ea(β)=91.7 kJ/mole and Ea(γ)=8.68 kJ/mole. α-relaxation associated with cooperative segmental motions of the (–H2C–∅–CH2–)n chains is observed with a peak at 10−2 Hz for T=80 °C and follows a Vogel–Fulcher–Tamman–Hesse law.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.