. In vitro, SXN101742 targeted the GHRH receptor and depleted a SNARE protein involved in GH exocytosis, vesicle-associated membrane protein 2 (VAMP2). In vivo, administering SXN101742 to growing rats produced a dose-dependent inhibition of GH synthesis, storage, and secretion. Consequently, hepatic IGF1 production and resultant circulating IGF1 levels were reduced. Accordingly, body weight, body length, organ weight, and bone mass acquisition were all decreased, reflecting the biological impact of SXN101742 on the GH/IGF1 axis. An inactivating 2-amino acid substitution within the zinc coordination site of the endopeptidase domain completely abolished SXN101742 inhibitory actions on GH and IGF1. Thus, genetically reengineered BoNTs can be targeted to nonneural cells to selectively inhibit hormone secretion, representing a new approach to treating hormonal excess.