The importance of conservation of aquatic biodiversity on sustainable fisheries is gradually being recognized by more and more people. Positive results have been reported from establishing marine protected areas (MPAs) as well as freshwater reserves (Koning & McIntyre, 2021;Lenihan et al., 2021). Conservation of aquatic animals and plants is not yet fully addressed in a way that will protect genetic resources for aquaculture purposes. The Food and Agriculture Organization (FAO) (2019) published a report about aquatic genetic resources based on surveyed responses from 92 countries. Most replies to the questions were positive and energetic, but it also revealed problems that limited efforts made to conserve the aquatic genetic resource.This editorial aims to call attention to conservation of genetic resources from an aquaculture perspective.Producers could consider practices that are more friendly to conservation of genetic resources. Management bodies may pay attention not only to biodiversity alone, but also to the genetic diversity important to sustainable aquaculture. Research plans could be prioritized to address important questions such as characterization of populations, optimizing fast and efficient genotyping and phenotyping tools, evaluating environmental factors and protection approaches not only for species richness but also genetic diversity, and estimating effects of stock enhancement programs on genetic components of wild populations.
| GENETIC VARIATION AND SUSTAINABLE AQUACULTUREAquaculture species have two eminent features that make them highly suitable for selective breeding: high fecundity and high genetic diversity, because most species in aquaculture are still in the early stages of domestication (Houston et al., 2020). High genetic variation in wild populations is an important resource for selective breeding of aquatic species. The genetic resource of wild populations can contribute in various ways to sustainable aquaculture. First, wild alleles can be reintroduced to farmed populations if inbreeding occurs due to bottleneck effects in breeding practices. Second, if there is demand for new traits, such as resistance to disease, genetic materials can be accessed from selected strains as well as the wild populations. Third, there are still many other or "novel" species, particularly native species being tested for aquaculture, such as the fat sleeper (Dormitator latifrons) in Latin America (Vega-Villasante et al., 2021). Therefore, conservation of biodiversity and genetic variation of aquatic species is important for developing and maintaining good strains for sustainable aquaculture. Furthermore, comparison between different regional populations and farmed ones may aid understanding of genetic components that underlie aquaculture performance across different traits, such as identifying causative variants for target traits (Houston et al., 2020).