Band 4.1 is a major protein of the erythrocyte membrane skeleton. It promotes the binding of spectrin to F-actin and may anchor the skeletal network to the plasma membrane via its association with integral membrane proteins. Here, we have investigated the involvement of inositol phospholipids in the binding of band 4.1 to erythrocyte membranes using membrane vesicles stripped of all peripheral proteins at alkaline pH. Trypsinization of these vesicles allows the discrimination of two classes of band 4.1 binding sites: trypsin-sensitive sites (60-65 % of the total), largely or exclusively on band 3, and trypsin-resistant sites (35-40% of the total), composed, at least in part, of the glycophorins. ATP depletion or activation of erythrocyte phosphoinositol phospholipase C led to a reduction in membrane phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] content by 20-70% in different experiments. The resulting decrease of band 4.1 binding to vesicles by was variable, but averaged about 15-20%. The same treatments led to an average decrease in the band 4.1 binding capacity of trypsinized vesicles of 55%. Since this is equivalent to a 20% decrease in the binding capacity of non-trypsinized vesicles (consistent with the above result), it indicates that PtdIns(4,5)P2 regulates the binding of band 4.1 only to trypsin-resistant binding sites (and to only a subset of these) accounting for about 1 5 2 0 % of total band 4.1 binding sites on membranes. We found that hydrolysis of > 95% of PtdIns(4,5)P2 with exogenous phospholipase C-6 (PLCG) resulted in no further decrease in band 4.1 binding to vesicles than did hydrolysis of 65-70% of PtdIns(4,5)P2 which is accessible to erythrocyte phosphoinositol phospholipase C. This suggests that only 65-70% of total membrane PtdIns(4,5)P2 is involved in regulating band 4.1 binding. Significantly, the pool of PtdIns(4,5)P, involved is the same pool which can be hydrolysed by erythrocyte phosphoinositol phospholipase C, and which has been shown to be metabolically labile in erythrocytes. The membrane binding capacity for band 4.1 found in this study (averaging 1000 pg/mg vesicle protein) is considerably higher than that found in previous studies. The results are consistent with the existence of a binding site for band 4.1 on each copy of the major transmembrane proteins (band 3 and the glycophorins). These results provide new insights into the involvement of membrane inositol phospholipids in cytoskeletal-membrane interactions.The human erythrocyte membrane is underlaid by a network of proteins that confers on the cell its characteristic biconcave shape, remarkable deformability and mechanical strength (reviewed in [I, 21). This network is mainly composed of spectrin tetramers, short oligomers of actin, and band 4.1, which self-assemble in complexes to form the skeletal lattice structure. Other proteins such as band 4.9, adduCorrespondence to