The micronuclear gene encoding actin I in Uroleptus pisces occurs in two segments. Segment I contains 638 bp divided into six macronuclear destined subsegments, or MDSs, by five internal eliminated segments, or IESs. The MDSs in segment 1 are in the scrambled disorder, 1-2-4-8-6-15, with MDSs 8 and 6 inverted. Segment II contains 2452 bp divided into ten MDSs by nine IESs in the scrambled disorder, 3-5-7-10-13-12-9-14-16-11, with MDSs 12, 9, and 11 inverted. Extensive attempts by polymerase chain reaction to connect the two segments failed. We conclude that the two segments are separated by a very long IES or are in different loci. The pattern of the 16 scrambled MDSs is entirely different from the scrambled pattern observed for the actin I gene in six other stichotrichs. We conclude that the actin I gene became scrambled on two separate occasions during stichotrich evolution: once in the lineage leading to the group of six stichotrichs, which includes, among others, Sterkiella species and Stylonychia lemnae, and once in the lineage leading to Uroleptus pisces. Repeated sequence pairs (pointers) of three to 14 bases at the ends of MDSs appear to be essential for correct splicing of MDSs during macronuclear development. However, the micronuclear actin gene also contains 40 matches of eight or more bases between IESs and MDSs that do not function as pointers. To prevent these ectopic repeats from causing improper processing of the micronuclear gene appears to demand a template of DNA or RNA from the old macronucleus to guide splicing of MDSs in the orthodox order.