1999
DOI: 10.1007/3-540-48304-7_25
|View full text |Cite
|
Sign up to set email alerts
|

Evolution of Neural Controllers with Adaptive Synapses and Compact Genetic Encoding

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
8
0
1

Year Published

2000
2000
2011
2011

Publication Types

Select...
3
2
2

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(9 citation statements)
references
References 5 publications
0
8
0
1
Order By: Relevance
“…When tested in gray and black environments, only a few lucky individuals that encounter the target before a wall have non-zero tness values. Individuals with noisy synapses score very low tness values in all conditions but they generalize better than genetically-determined individuals 6 . 4 Using di erent sequences of random number.…”
Section: Resultsmentioning
confidence: 96%
See 1 more Smart Citation
“…When tested in gray and black environments, only a few lucky individuals that encounter the target before a wall have non-zero tness values. Individuals with noisy synapses score very low tness values in all conditions but they generalize better than genetically-determined individuals 6 . 4 Using di erent sequences of random number.…”
Section: Resultsmentioning
confidence: 96%
“…5 Node Encoding for xed synapses was not capable of solving the original problem, therefore we report results for Synapse Encoding. 6 Notice that adaptive individuals report better tness also in the evolutionary environment. The performance issue has been addressed in another paper 6].…”
Section: Resultsmentioning
confidence: 99%
“…Ainsi, comme (Floreano et al, 1999(Floreano et al, , 2000 on peut proposer différentes lois locales d'adaptation des poids inspirées de la biologie : règle de Hebb, règle post-synaptique, règle pré-synaptique, règle de covariance... Nous proposons dans notre démarche d'incorporer en plus d'autres lois biologiques de type « homéostatique » (Turrigiano, 1999) qui vont tendre par synergie à stabiliser la fréquence d'activation du neurone dans un domaine efficace. Ainsi, un neurone « saturé » ou « muet » verra son excitabilité (son biais) diminuer ou augmenter vers un niveau d'activité raisonnable.…”
Section: Modèle Bio-inspiré De Contrôleur Neuronal Adaptatifunclassified
“…[5] in which a local adaptation rule is assignated to each connection as suggested by biological observations: In order to model the mechanism that regulate neuronal excitability, we use the model of center crossing networks proposed by Mathayomchan and al. [13].…”
Section: B Neuron and Synapse Modelmentioning
confidence: 99%
“…We adapt this concept to build our versatile model by reformulating it. Thus, after transformation 4 and homogenization 5 , we obtain the modified activity o i as follows:…”
Section: B Neuron and Synapse Modelmentioning
confidence: 99%