During the evolution of angiosperm flowers, some floral traits may undergo certain changes in order to participate in screening. The stamens and pistils of Delphinium caeruleum are covered by two “door-like” staminodes, the evolutionary function of which, however, is quite unknown. In this study, we investigated whether D. caeruleum staminodes acted as visitor filters by assessing the respective strengths of staminodes and visitor insects (six bee species). We measured the operative strength required to open the staminodes and the strength that insects were capable of exerting using a biological tension sensor. Furthermore, we compared the strength required to open staminodes at different phases of the flowering period (male and female phases) and the strength of different visitors (visitors and non-visitors of D. caeruleum). The results showed that the strength needed to open staminodes in the male phase was significantly higher than that in the female phase. There was no significant difference between the strength exerted by visitors and required by staminodes of D. caeruleum in the male phase, but the visitor strength was significantly higher than that required to open staminodes in the female phase flowers. The strength of non-visitors was significantly lower than that required to open staminodes in the male phase. Furthermore, there was a significant positive association between the strength and the body weight of the bees. These results highlighted the observation that only strong visitors could press the two staminodes to access the sex organs and achieve successful pollination. Furthermore, these results revealed the function of pollinator screening by the staminodes of D. caeruleum. The biomechanical approach to the study of flowers allowed us to address relevant ecological and evolutionary questions of the plant–pollinator interaction and explore the functional modules within the flower structure in other plant species.