A goal of taxonomy is to employ a method of classification based on phylogeny that captures the morphological and genetic diversity of organismal lineages. However, morphological and genetic diversity may not always be concordant, leading to challenges in systematics. The scale worm Polyeunoa laevis has been hypothesized to represent a species complex based on morphology, although there is little knowledge of its genetic diversity. Commonly found in Antarctic waters and usually associated with gorgonian corals (especially Thouarella), this taxon is also reported from the south‐west Atlantic, Magellanic and sub‐Antarctic regions. We employ an integrative taxonomic approach to examine the traditional morphological characters used for scale worm identification in combination with COI mitochondrial gene data and whole mtDNA genomes. Moreover, we consider P. laevis's association with Thouarella by examining data from the mMutS gene, a soft‐coral phylogenetic marker. Analyses for P. laevis recovered 3 clades, two in Antarctic waters and one from the Argentina‐Indian Ocean. Interestingly, genetic and morphological results show differences between specimens from South Argentina and the Antarctic region, suggesting that open ocean barriers might have limited gene flow from these regions. Bayesian phylogenetic analyses for Thouarella resulted in at least 12 lineages, although some of the lineages consist of only a single individual. Our results show different evolutionary histories for both species, confirming that association between these scale worms and their hosts is not restrictive. For both taxonomic groups, biodiversity in the Southern Ocean appears to be underestimated.