2015 International Conference on Cloud Computing Research and Innovation (ICCCRI) 2015
DOI: 10.1109/icccri.2015.17
|View full text |Cite
|
Sign up to set email alerts
|

Evolutionary Neural Network Based Energy Consumption Forecast for Cloud Computing

Abstract: Abstract-The success of Hadoop, an open-source framework for massively parallel and distributed computing, is expected to drive energy consumption of cloud data centers to new highs as service providers continue to add new infrastructure, services and capabilities to meet the market demands. While current research on data center airflow management, HVAC (Heating, Ventilation and Air Conditioning) system design, workload distribution and optimization, and energy efficient computing hardware and software are all… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
3

Year Published

2016
2016
2023
2023

Publication Types

Select...
5
2
2

Relationship

3
6

Authors

Journals

citations
Cited by 20 publications
(11 citation statements)
references
References 27 publications
(22 reference statements)
0
8
0
3
Order By: Relevance
“…Apart from the fields mentioned above, EC-NNs are used in other fields as well, where they can be applied to forecast energy consumption of cloud computing [15], reconstruct the topology of gene regulatory network [16], design custom-made fractal antennas [33], optimize large scale problem [20] as well as employed in Spatio-Temporal system identification [32], and an online modeling algorithm [25].…”
Section: Othersmentioning
confidence: 99%
“…Apart from the fields mentioned above, EC-NNs are used in other fields as well, where they can be applied to forecast energy consumption of cloud computing [15], reconstruct the topology of gene regulatory network [16], design custom-made fractal antennas [33], optimize large scale problem [20] as well as employed in Spatio-Temporal system identification [32], and an online modeling algorithm [25].…”
Section: Othersmentioning
confidence: 99%
“…The data collected from the Hadoop cluster are used to train and calibrate the NN models. The details of the testbed setup and evolutionary NN training is described in our earlier work in [7][8].…”
Section: A Experiments Setup and Data Collectionmentioning
confidence: 99%
“…El constante incremento del consumo de energía eléctrica (CEE) [1][2], estrechamente ligado al desarrollo socioeconómico [3][4], se ha convertido en uno de los temas que más ocupa la atención de políticos y científicos, tanto para determinar políticas de energía [3][4][5] como para considerar la disminución de costos en todos los puntos de su proceso de producción (generación, distribución y consumo, con énfasis en este último) [6][7] y preservar el medio ambiente [8][9]. La marcada tendencia a la desregulación del mercado de la energía eléctrica [10][11], los cambios climáticos [12][13], la expansión del uso de las energías renovables [14] y la escasez de combustibles fósiles hacen más complejo el escenario; por lo tanto, contar con pronósticos de CEE que den cuenta acabadamente de esta complejidad se vuelve un desafío.…”
Section: Introductionunclassified