Abstract-Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements.
Abstract-An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity. Index Terms-Adaptive particle swarm optimization (APSO), evolutionary computation, global optimization, particle swarm optimization (PSO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.