Due to the design of computer systems in the multi‐core and/or multi‐processor form, it is possible to use the maximum capacity of processors to run an application with the least time consumed through parallelisation. This is the responsibility of parallel compilers, which perform parallelisation in several steps by distributing iterations between different processors and executing them simultaneously to achieve lower runtime. The present paper focuses on the uniformisation of three‐level perfect nested loops as an important step in parallelisation and proposes a method called Towards Three‐Level Loop Parallelisation (TLP) that uses a combination of a Frog Leaping Algorithm and Fuzzy to achieve optimal results because in recent years, many algorithms have worked on volumetric data, that is, three‐dimensional spaces. Results of the implementation of the TLP algorithm in comparison with existing methods lead to a wide variety of optimal results at desired times, with minimum cone size resulting from the vectors. Besides, the maximum number of input dependence vectors is decomposed by this algorithm. These results can accelerate the process of generating parallel codes and facilitate their development for High‐Performance Computing purposes.