2018
DOI: 10.1016/j.knosys.2018.04.025
|View full text |Cite
|
Sign up to set email alerts
|

Evolving Support Vector Machines using Whale Optimization Algorithm for spam profiles detection on online social networks in different lingual contexts

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
27
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2
2

Relationship

0
10

Authors

Journals

citations
Cited by 127 publications
(29 citation statements)
references
References 17 publications
1
27
0
1
Order By: Relevance
“…By hybridizing an established meta-heuristic technique called Whale Optimization Algorithm (WOA) with Support Vector Machines (SVM), a hybrid machine learning model was proposed with a view to identifying spammers in Twitter. The concept behind using WOA in this hybrid technique was to improve SVM's parameters along with the task of selecting the proper spam recognition features [10].…”
Section: Imentioning
confidence: 99%
“…By hybridizing an established meta-heuristic technique called Whale Optimization Algorithm (WOA) with Support Vector Machines (SVM), a hybrid machine learning model was proposed with a view to identifying spammers in Twitter. The concept behind using WOA in this hybrid technique was to improve SVM's parameters along with the task of selecting the proper spam recognition features [10].…”
Section: Imentioning
confidence: 99%
“…The classifier has two parameters called penalty and kernel parameters. These parameters have major effect on SVM performance [21]. The first one plays an important role as a tradeoff between training data error minimization and the maximization of the classification margin.…”
Section: B) Support Vector Machine Classificationmentioning
confidence: 99%
“…Цей метод широко використовують для розпізнавання образів [27] та створення спам-фільтрів [28], в фінансовому прогнозуванні [29], тощо. Методу властива простота реалізації, але застосовується лише для задач з двома класами даних, так для вхідних даних SVM прогнозує одну з двох можливих форм виходу.…”
Section: рис 5 приклад побудови гіперплощини для двохunclassified