This work investigated the influence of the reaction time and catalyst-to-residual fat ratio by catalytic upgrading from pyrolysis vapors of residual fat at 400 °C and 1.0 atmosphere, on the yields of reaction products, physicochemical properties (density, kinematic viscosity, and acid value) and chemical composition of bio-oils, over a catalyst fixed-bed reactor of activated carbon pellets impregnated with 10.0 M NaOH, in semi-pilot scale. The experiments were carried out at 400 °C and 1.0 atmosphere, using a process schema consisting of a thermal cracking reactor of 2.0 L coupled to a catalyst fixed-bed reactor of 53 mL, without catalyst and using 5.0%, 7.5%, and 10.0% (wt.) activated carbon pellets impregnated with 10.0 M NaOH, in batch mode. Results show yields of bio-oil decreasing with increasing catalyst-to-tallow ratio. The GC-MS of liquid reaction products identified the presence of hydrocarbons (alkanes, alkenes, ring-containing alkanes, ring-containing alkenes, and aromatics) and oxygenates (carboxylic acids, ketones, esters, alcohols, and aldehydes). For all the pyrolysis and catalytic cracking experiments, the hydrocarbon selectivity in bio-oil increases with increasing reaction time, while those of oxygenates decrease, reaching concentrations of hydrocarbons up to 95.35% (area).