The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam. The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.