Percolation, a paradigmatic geometric system in various branches of physical sciences, is known to possess logarithmic factors in its correlators. Starting from its definition, as the Q → 1 limit of the Q-state Potts model with SQ symmetry, in terms of geometrical clusters, its operator content as N -cluster observables has been classified. We extensively simulate critical bond percolation in two and three dimensions and determine with high precision the N -cluster exponents and non-scalar features up to N = 4 (2D) and N = 3 (3D). The results are in excellent agreement with the predicted exact values in 2D, while such families of critical exponents have not been reported in 3D, to our knowledge. Finally, we demonstrate the validity of predictions about the logarithmic structure between the energy and two-cluster operators in 3D.
PACS numbers: