The phosphoryl-binding loops in the guanosine diphosphate binding domain of elongation factor Tu were studied by 15N heteronuclear proton-observe NMR methods. Five proton resonances were found below 10.5 ppm. One of these was assigned to the amide group of Lys 24, which is a conserved residue in the phosphoryl-binding concensus loop of purine nucleotide binding proteins. The uncharacteristic downfield proton shift is attributed to a strong hydrogen bond with a phosphate oxygen. The amide protons from the homologous lysines in N-ras p21 [Redfield, A.G., & Papastavros, M.Z. (1990) Biochemistry 29, 3509-3514] and the catalytic domain of Escherichia coli elongation factor Tu [Lowry, D.F., Cool, R.H., Redfield, A.G., & Parmeggiani, A. (1991) Biochemistry 30, 10872-10877] also resonate downfield in similar positions. We propose that the downfield shift of this lysine amide proton is a spectral marker for this class of proteins. We also have studied the temperature dependence of the downfield resonances and find a possible conformation change at 40 degrees C.