Recent electron microscopy data have revealed that cardiac mitochondria are not arranged in crystalline columns, but are organised with several mitochondria aggregated into columns of varying sizes often spanning the cell cross-section. This All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/327254 doi: bioRxiv preprint first posted online May. 22, 2018; raises the question -how does the mitochondrial arrangement affect the metabolite distributions within cardiomyocytes and their impact on force dynamics? Here we employed finite element modelling of cardiac bioenergetics, using computational meshes derived from electron microscope images, to address this question. Our results indicate that heterogeneous mitochondrial distributions can lead to significant spatial variation across the cell in concentrations of inorganic phosphate, creatine (Cr) and creatine phosphate (PCr). However, our model predicts that sufficient activity of the creatine kinase (CK) system, coupled with rapid diffusion of Cr and PCr, maintains near uniform ATP and ADP ratios across the cell cross sections. This homogenous distribution of ATP and ADP should also evenly distribute force production and twitch duration with contraction. These results suggest that the PCr shuttle, and associated enzymatic reactions, act to maintain uniform force dynamics in the cell despite the heterogeneous mitochondrial organization. However, our model also predicts that under hypoxia -activity of mitochondrial CK enzyme and diffusion of high-energy phosphate compounds may be insufficient to sustain uniform ATP/ADP distribution and hence force generation.
Author SummaryMammalian cardiomyocytes contain a high volume of mitochondria, which maintains the continuous and bulk supply of ATP to sustain normal heart function. Previously, cardiac mitochondria were understood to be distributed in a regular, crystalline pattern, which facilitated a steady supply of ATP at different workloads. Using electron microscopy images of cell cross sections, we recently found that they are not regularly distributed inside cardiomyocytes. We created new spatially accurate computational models of cardiac cell bioenergetics and tested whether this All rights reserved. No reuse allowed without permission.(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.The copyright holder for this preprint . http://dx.doi.org/10.1101/327254 doi: bioRxiv preprint first posted online May. 22, 2018; heterogeneous distribution of mitochondria causes non-uniform energy supply and contractile force production in the cardiomyocyte. We found that ATP and ADP concentrations remain uniform throughout the cell because of the activity of creatine kinase (CK) enzymes that convert ATP produced in the mitochondria into creatine phosphate...