Salt Lakes, having a salt concentration higher than that of seawater and hosting unique extremophiles, are predominantly located in drought-prone zones worldwide, accumulating diverse salts and continuously emitting salt dust or aerosols. However, knowledge on emission, chemical composition, and health impacts of Salt Lake aerosols under climate change is scarce. This review delves into the intricate dynamics of Salt Lake aerosols in the context of climate change, pointing out that, as global warming develops and weather patterns shift, Salt Lakes undergo notable changes in water levels, salinity, and overall hydrological balance, leading to a significant alteration of Salt Lake aerosols in generation and emission patterns, physicochemical characteristics, and transportation. Linked to rising temperatures and intensified evaporation, a marked increase will occur in aerosol emissions from breaking waves on the Salt Lake surface and in saline dust emission from dry lakebeds. The hygroscopic nature of these aerosols, coupled with the emission of sulfate aerosols, will impart light-scattering properties and a cooling effect. The rising temperature and wind speed; increase in extreme weather in regard to the number of events; and blooms of aquatic microorganisms, phytoplankton, and artemia salina in and around Salt Lakes, will lead to the release of more organic substances or biogenic compounds, which contribute to the alteration of saline aerosols in regard to their quantitative and chemical composition. Although the inhalation of saline aerosols from Salt Lakes and fine salt particles suspended in the air due to salt dust storms raises potential health concerns, particularly causing respiratory and cardiovascular disease and leading to eye and skin discomfort, rock salt aerosol therapy is proved to be a good treatment and rehabilitation method for the prevention and treatment of pneumoconiosis and chronic obstructive pulmonary disease (COPD). It is implied that the Salt Lake aerosols, at a certain exposure concentration, likely can delay the pathogenesis of silicosis by regulating oxidative stress and reducing interstitial fibrosis of the lungs. It emphasizes the interconnectedness of climate changes, chemical composition, and health aspects, advocating for a comprehensive and practical approach to address the challenges faced by Salt Lake aerosols in an ever-changing global climate.