“…The challenges of energy and clean water scarcity, especially in the remote areas, are becoming a more and more serious issue and would severely influence on economic and society development 1 , 2 . Currently, many technologies have been proposed to solve these problems 3 – 5 , for instance reverse systems 6 , 7 , multi-stage flash 8 , 9 , adsorbed treatment 10 , tiny-fog collection 2 , 11 , 12 and interface solar assisted evaporation 13 , 14 , among which solar assisted evaporation is regarded as a promising strategy to address the fresh water scarcity by treating the seawater on account of its economically, easy operation, renewable energy sources, sustainability and environment friendliness 15 , 16 . The biggest advantage of interfacial evaporation is high solar energy utilizing efficiency which attributes to its excellent energy management by remarkably suppressing heat loss to bulk water via thermal insulation foam between the bulk water and work interface, and good water management enabled by hydrophilic properties of photo-thermals conversion materials 13 , 17 – 19 .…”