Correlations between reliability and interfacial structure changes of ultrathin silicon oxide gate films grown at 700 °C with in situ pyrolytic-gas passivation (PGP) were investigated. PGP uses a little pyrolytic N2O and NF3 during ultradry oxidation with pure O2 at less than 1 ppb humidity and has a potential for application to future low-temperature device fabrication processes due to the reliability retention of the films. It was found that the reliability for the 700 °C grown PGP films is much like that of the 800–900 °C grown ones, with an interface state density of less than 1–3×1010/eV cm2 maintained. Quantitative analyses of N, F, and O indicated that this is probably due to microscopic, interfacial structure changes, that is, N and F passivation effectively contributes to compensate inconsistent-state bonding sites and to generate a high-density structure with few dangling bonds.