The cross-sections for the formation of 54,56,57,58 Co in the 54,56,57,58 Fe(p, n) reaction from threshold to 30 MeV protons have been theoretically calculated using the TALYS-1.4 nuclear model code, whereby we have studied major nuclear reaction mechanisms, including direct, preequilibrium and compound nuclear reaction. Subsequently, the level density and shell damping parameters have been adjusted and at the same time, the odd-even effects are well comprehended. The excitation functions have been compared with experimental nuclear data. It is observed that the theoretical cross-sections match fairly well. Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces. In addition, complete information in this field is very much required for application in accelerator-driven subcritical system.