High-density polyethylene (HDPE) above-ground storage tanks (AST) are used by highway agencies to store liquid deicing chemicals for the purpose of road maintenance in the winter. A sudden AST failure can cause significant economic and environmental impacts. While ASTs are routinely inspected to identify signs of aging and damage, current methods may not adequately capture all defects, particularly if they are subsurface or too small to be seen during visual inspection. Therefore, to improve the ability to identify potential durability issues with HDPE ASTs, additional non-destructive evaluation (NDE) techniques need to be considered and assessed for applicability. Specifically, this study investigates the efficiency of using infrared thermography (IRT) as a rapid method to simultaneously examine large areas of the tank exterior, which will be followed by closer inspections with conventional and phased array ultrasonic testing (UT) methods. Results show that IRT can help to detect defects that are shallow, specifically located within half of the tank’s wall thickness from the surface. UT has the ability to detect all defects at any depth. Moreover, phased array UT helps to identify stacked defects and characterize each defect more precisely than IRT.