Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photonto-current conversion efficiencies beyond the 30% ShockleyQueisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule.acene oligomers | excited states | singlet fission | multireference perturbation theory | time-resolved spectroscopy S inglet fission (SF) is a spin-allowed process to convert one singlet excited state into two triplet excited states, namely a correlated triplet pair (1). The ability to effectively implement SF processes in solar cells could allow for more efficient harvesting of high-energy photons from the solar spectrum and allow for the design of solar cells to circumvent the Shockley-Queisser performance limit (2). Indeed, several recent studies have demonstrated remarkably efficient solar cell devices based on SF (3-6).One requirement that needs to be met to achieve SF is that the photoexcited chromophore in its singlet excited state must share its energy with a neighboring ground-state chromophore. As such, the potential of coupled chromophores to afford two triplet excited states via SF has been elucidated in, for example, a tetracene dimer with an SF yield of around 3% (3, 7). Additionally, past experiments in single-crystal, polycrystalline, and amorphous solids of pentacene have documented that the efficiency of SF relates to the electronic coupling between these two chromophores (8, 9). Hence, molecular ordering in terms of crystal packing, that is, proximity, distances, orbital overlap, etc., is decisive with respect to gaining full control over and to finetuning interchromophoric interactions in the solid state (10, 11). Of equal importance are the thermodynamic requirements, namely that the energy of the lowest-lying singlet absorbing state must match or exceed the energy of two triplet excited states (S 1 ≥ 2T 1 ) (11). In light of both aspects, hydrocarbons such as acenes--tetracene, pentacene, hexacene--and their derivatives are at the forefront of investigations toward a sound understanding and development of molecular building blocks for SF. In tetracenes, the singlet-and triplet-pair energy levels are nearly degenerate (S 1 = 2T 1 ), leaving no or little standard enthalpy of reaction for SF (12). In solution, the latter is, however, offset by sizable entropy rendering the process rather slow and, thus, inefficient (13). In addition, the low SF yield relates to the dimer geometry. Its nature hinders electronic coupling through space, leaving only thro...