We deal with the existence of constant sign solutions for the following variable exponent system Neumann boundary value problem:-div(|∇u|p(x)-2∇u)+λ|u|p(x)-2u=Fu(x,u,v) in Ω, -div(|∇v|q(x)-2∇v)+λ|v|q(x)-2v=Fv(x,u,v)inΩ, ∂u/∂γ=0=∂v/∂γ on ∂Ω. We give several sufficient conditions for the existence of the constant sign solutions, whenF(x,·,·)satisfies neither sub-(p(x),q(x)) growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign solutions.