In this paper, the global asymptotic stability problem is considered for a class of neural networks with time-varying discrete and distributed delays. Based on the Lyapunov functional method, and by using the new technique for estimating the upper bound of the derivative of Lyapunov functional, the novel asymptotic stability criterion is derived in terms of linear matrix inequalities(LMIs). Two numerical examples are presented to show the less conservativeness of the proposed method.
A global optimization algorithm is proposed for solving sum of general linear ratios problem (P) using new pruning technique. Firstly, an equivalent problem (P1) of the (P) is derived by exploiting the characteristics of linear constraints. Then, by utilizing linearization method the relaxation linear programming (RLP) of the (P1) can be constructed and the proposed algorithm is convergent to the global minimum of the (P) through the successive refinement of the linear relaxation of feasible region and solutions of a series of (RLP). Then, a new pruning technique is proposed, this technique offers a possibility to cut away a large part of the current investigated feasible region by the optimization algorithm, which can be utilized as an accelerating device for global optimization of problem (P). Finally, the numerical experiments are given to illustrate the feasibility of the proposed algorithm.
LetδX(ϵ)andR(1,X)be the modulus of convexity and the Domínguez-Benavides coefficient, respectively. According to these two geometric parameters, we obtain a sufficient condition for normal structure, that is, a Banach spaceXhas normal structure if2δX(1+ϵ)>max{(R(1,x)-1)ϵ,1-(1-ϵ/R(1,X)-1)}for someϵ∈[0,1]which generalizes the known result by Gao and Prus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.