2021
DOI: 10.1007/s00245-021-09783-7
|View full text |Cite
|
Sign up to set email alerts
|

Existence and Non-existence of Global Solutions for a Nonlocal Choquard–Kirchhoff Diffusion Equations in $$\mathbb {R}^{N}$$

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
18
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 8 publications
(20 citation statements)
references
References 35 publications
1
18
0
Order By: Relevance
“…Finally, we introduce the basic space W$$ W $$ used in this paper, which is defined as follows: W={}uWs,p()N:NVfalse(xfalse)false|ufalse|pdx<.$$ W&amp;#x0003D;\left\{u\in {W}&amp;#x0005E;{s,p}\left({\mathbb{R}}&amp;#x0005E;N\right):{\int}_{{\mathbb{R}}&amp;#x0005E;N}V(x){\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;p dx&amp;lt;\infty \right\}. $$ By Boudjeriou, 51, Lemmas 2.1 and 2.2 we get W$$ W $$ is a separate and reflexive Banach space with the norm false‖·false‖$$ \left\Vert \cdotp \right\Vert $$ defined in () and WLν()N$$ W\hookrightarrow {L}&amp;#x0005E;{\nu}\left({\mathbb{R}}&amp;#x0005E;N\right) $$ is continuous for all νfalse[2,psfalse]$$ \nu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right] $$, and WLν()N$$ W\hookrightarrow \hookrightarrow {L}&amp;#x0005E;{\nu}\left({\mathbb{R}}&amp;#x0005E;N\right) $$ for all νfalse[2,psfalse)$$ \nu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right) $$, where ps=NpNsp$$ {p}_s&amp;#x0005E;{\ast }&amp;#x0003D;\frac{Np}{N- sp} $$ and the notations …”
Section: Introductionmentioning
confidence: 99%
See 4 more Smart Citations
“…Finally, we introduce the basic space W$$ W $$ used in this paper, which is defined as follows: W={}uWs,p()N:NVfalse(xfalse)false|ufalse|pdx<.$$ W&amp;#x0003D;\left\{u\in {W}&amp;#x0005E;{s,p}\left({\mathbb{R}}&amp;#x0005E;N\right):{\int}_{{\mathbb{R}}&amp;#x0005E;N}V(x){\left&amp;#x0007C;u\right&amp;#x0007C;}&amp;#x0005E;p dx&amp;lt;\infty \right\}. $$ By Boudjeriou, 51, Lemmas 2.1 and 2.2 we get W$$ W $$ is a separate and reflexive Banach space with the norm false‖·false‖$$ \left\Vert \cdotp \right\Vert $$ defined in () and WLν()N$$ W\hookrightarrow {L}&amp;#x0005E;{\nu}\left({\mathbb{R}}&amp;#x0005E;N\right) $$ is continuous for all νfalse[2,psfalse]$$ \nu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right] $$, and WLν()N$$ W\hookrightarrow \hookrightarrow {L}&amp;#x0005E;{\nu}\left({\mathbb{R}}&amp;#x0005E;N\right) $$ for all νfalse[2,psfalse)$$ \nu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right) $$, where ps=NpNsp$$ {p}_s&amp;#x0005E;{\ast }&amp;#x0003D;\frac{Np}{N- sp} $$ and the notations …”
Section: Introductionmentioning
confidence: 99%
“…Remark Since WLμ()N$$ W\hookrightarrow \hookrightarrow {L}&amp;#x0005E;{\mu}\left({\mathbb{R}}&amp;#x0005E;N\right) $$ for μfalse[2,psfalse)$$ \mu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right) $$ (see Boudjeriou 51, Lemma 2.2 ), it follows from uLfalse(0,T;Wfalse)$$ u\in {L}&amp;#x0005E;{\infty}\left(0,T;W\right) $$ and utL2()0,T;L2()N$$ {u}_t\in {L}&amp;#x0005E;2\left(0,T;{L}&amp;#x0005E;2\left({\mathbb{R}}&amp;#x0005E;N\right)\right) $$ that uC()false[0,Tfalse],Lν()N$$ u\in C\left(\left[0,T\right],{L}&amp;#x0005E;{\nu}\left({\mathbb{R}}&amp;#x0005E;N\right)\right) $$ for any μfalse[2,psfalse)$$ \mu \in \left[2,{p}_s&amp;#x0005E;{\ast}\right) $$ and Tfalse(0,Tmaxfalse)$$ T\in \left(0,{T}_{\mathrm{max}}\right) $$, so the value of u$$ u $$ at time t=0$$ t&amp;#x0003D;0 $$, that is, ufalse(0false)$$ u(0) $$ makes sense.…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations