PurposeIn the present paper, the authors will discuss the solvability of a class of nonlinear anisotropic elliptic problems (P), with the presence of a lower-order term and a non-polynomial growth which does not satisfy any sign condition which is described by an N-uplet of N-functions satisfying the Δ2-condition, within the fulfilling of anisotropic Sobolev-Orlicz space. In addition, the resulting analysis requires the development of some new aspects of the theory in this field. The source term is merely integrable.Design/methodology/approachAn approximation procedure and some priori estimates are used to solve the problem.FindingsThe authors prove the existence of entropy solutions to unilateral problem in the framework of anisotropic Sobolev-Orlicz space with bounded domain. The resulting analysis requires the development of some new aspects of the theory in this field.Originality/valueTo the best of the authors’ knowledge, this is the first paper that investigates the existence of entropy solutions to unilateral problem in the framework of anisotropic Sobolev-Orlicz space with bounded domain.