This paper, is devoted to an existence result of entropy unilateral solutions for the nonlinear parabolic problems with obstacle in Musielak- Orlicz--spaces:$$ \partial_{t}u + A(u) + H(x,t,u,\nabla u) =f + div(\Phi(x,t,u))$$and $$ u\geq \zeta \,\,\mbox{a.e. in }\,\,Q_T.$$Where $A$ is a pseudomonotone operator of Leray-Lions type defined in the inhomogeneous Musielak-Orlicz space $W_{0}^{1,x}L_{\varphi}(Q_{T})$,$H(x,t,s,\xi)$ and $\phi(x,t,s)$ are only assumed to be Crath\'eodory's functions satisfying only the growth conditions prescribed by Musielak-Orlicz functions $\varphi$ and $\psi$ which inhomogeneous and does not satisfies $\Delta_2$-condition. The data $f$ and $u_{0}$ are still taken in $L^{1}(Q_T)$ and $L^{1}(\Omega)$.
This manuscript proves the existence of a nonnegative, nontrivial solution to a class of double-phase problems involving potential functions and logarithmic nonlinearity in the setting of Sobolev space on complete manifolds. Some applications are also being investigated. The arguments are based on the Nehari manifold and some variational techniques.
UDC 517.5
In this article, we study the existence result of the unilateral problemwhere is a Leray–Lions operator defined on Sobolev–Orlicz space where and are two complementary -functions, the first and the second lower terms and satisfies only the growth condition and any sign condition is assumed and where is a measurable function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.