In this paper, we propose the solutions of nonhomogeneous fractional integral equations of the form I0+3σy(t)+a·I0+2σy(t)+b·I0+σy(t)+c·y(t)=f(t), where I0+σ is the Riemann–Liouville fractional integral of order σ=1/3,1,f(t)=tn,tnet,n∈N∪{0},t∈R+, and a,b,c are constants, by using the Laplace transform technique. We obtain solutions in the form of Mellin–Ross function and of exponential function. To illustrate our findings, some examples are exhibited.