1979
DOI: 10.1007/bf01238519
|View full text |Cite
|
Sign up to set email alerts
|

Existenz eines 6-Normalenpunktes in einem konvexen K�rper

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
10
0
2

Year Published

1983
1983
2010
2010

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(13 citation statements)
references
References 9 publications
1
10
0
2
Order By: Relevance
“…Now we show that the results of Section 1 are still true if the smoothness condition (dK E C2) is dropped. (This was also claimed in [7], but the proof given there is valid only for dK E C2.) For an arbitrary convex body K c En (n 2 3), a normal is a straight line orthogonal to a supporting hyperplane at one of its points of support.…”
Section: The Non-smcoth Casesupporting
confidence: 57%
See 3 more Smart Citations
“…Now we show that the results of Section 1 are still true if the smoothness condition (dK E C2) is dropped. (This was also claimed in [7], but the proof given there is valid only for dK E C2.) For an arbitrary convex body K c En (n 2 3), a normal is a straight line orthogonal to a supporting hyperplane at one of its points of support.…”
Section: The Non-smcoth Casesupporting
confidence: 57%
“…The focal surface 9 of the ellipsoid in E3 was studied by Caley and others. It divides E3 into regions with two, four, or six normals through each point; see [7] for an illustration and more details. The situation is similar in the general case (dK E C2) as we shall see.…”
Section: The Set Of Non-focal Pointsmentioning
confidence: 99%
See 2 more Smart Citations
“…Nous démontrerons ensuite une propriété remarquable des normalesà un corps convexe plan de largeur constante et de classe C 2 + : il existe un point par lequel il passe une infinité de normales ou un ouvert formé de points par lesquels il passe au moins 6 normales. Notre résultat, qui sera plus général, correspondà celuiétabli par E. Heil dans R 3 : un corps convexe de largeur constante de R 3 contient un point par lequel il passe une infinité de normales ou un ouvert formé de points par lesquels il passe au moins 10 normales (voir [3] et [4]).…”
Section: Introductionunclassified