Objective
LRP1, a multifunctional protein involved in endocytosis and cell signaling pathways, leads to a range of vascular pathologies when deleted in vascular smooth muscle cells (SMCs). The purpose of this study was to determine whether LRP1 deletion in SMCs influenced AngII-induced arterial pathologies.
Approach and Results
LRP1 protein abundance was equivalent in selected arterial-regions, but SMC-specific LRP1 depletion had no effect on abdominal and ascending aortic diameters in young mice. To determine the effects of LRP1 deficiency on AngII vascular responses, SMC-specific LRP1 (smLRP1) +/+ and -/- mice were infused with saline, AngII, or norepinephrine (NE). Several smLRP-/- mice died of superior mesenteric arterial (SMA) rupture during AngII infusion. In surviving mice, AngII profoundly augmented SMA dilation in smLRP1-/- mice. SMA dilation was blood pressure-dependent as demonstrated by a similar response during NE infusion. SMA dilation was also associated with profound macrophage accumulation, but minimal elastin fragmentation. AngII infusion led to no significant differences in abdominal aorta diameters between smLRP1+/+ and -/- mice. In contrast, ascending aortic dilation was exacerbated markedly in AngII-infused smLRP1-/- mice, but NE had no significant effect on either aortic region. Ascending aortas of smLRP1-/- mice infused with AngII had minimal macrophage accumulation but significantly increased elastin fragmentation and mRNA abundance of several LRP1 ligands including MMP-2 and uPA.
Conclusions
smLRP1 deficiency had no effect on AngII-induced abdominal aortic aneurysm formation. Conversely, AngII infusion in smLRP1-/- mice exacerbated SMA and ascending aorta dilation. Dilation in these two regions had differential association with blood pressure and divergent pathologic characteristics.