Straw is considered to be a renewable resource for bioenergy and biomaterial. However, about 70% of straw is burned in fields, which causes serious air pollution in China. In this study, a life cycle assessment (LCA) model, together with emergy evaluation, was built to compare four straw applications after harvest vs. direct burning, including bioethanol (BE), combined heat and power plant (CHP), corrugated base paper (CP), and medium-density fiberboard (MDF). The results showed that BE and MDF would avoid greenhouse gas (GHG) emissions by 82% and 36%, respectively, while CHP and CP would emit 57% and 152% more GHG , respectively, compared with direct straw burning. Bioethanol had the highest renewability indicator (RI) of 47.7%, and MDF obtained the greatest profit of 657 Yuan·bale -1 . The applications CHP and CP had low RI (< 10.3%) and profit (< 180 Yuan·bale -1 ). Due to water recycling and electrical power as a coproduct, BE had the lowest value (3 × 10 11 sej·Yuan -1 ) of EmPM (emergy per unit money profit); the EmPM value of CP was 18.6 times higher than that of BE. The four straw applications would also greatly reduce particles emission (57 to 98%) to air. BE was judged to be the most environmentally friendly application among the four straw applications. Imposing a carbon tax would encourage investment in BE, but discourage the applications CHP and CP.