A phase transfer catalyzed asymmetric alkylation of anthrones with cyclic allylic bromides using quinidine- or quinine-derived catalysts is described. Utilizing mild basic conditions and as low as 0.5 mol % catalyst loading, and achieving up to >99:1 dr selectivity, this asymmetric reaction was successfully applied to produce enantioselectively (−)- and (+)-viridicatumtoxins B, and thus allowed assignment of the absolute configuration of this naturally occurring antibiotic. While the developed asymmetric synthesis of C10 substituted anthrones is anticipated to find wider applications in organic synthesis, its immediate application to the construction of a variety of designed enantiopure analogues of viridicatumtoxin B led to the discovery of highly potent, yet simpler analogues of the molecule. These studies are expected to facilitate drug discovery and development efforts toward new antibacterial agents.